Grasp Recognition for Uncalibrated Data Gloves: A Machine Learning Approach
نویسندگان
چکیده
This paper presents a comparison of various machine learning methods applied to the problem of recognizing grasp types involved in object manipulations performed with a data glove. Conventional wisdom holds that data gloves need calibration in order to obtain accurate results. However, calibration is a time-consuming process, inherently user-specific, and its results are often not perfect. In contrast, the present study aims at evaluating recognition methods that do not require prior calibration of the data glove. Instead, raw sensor readings are used as input features that are directly mapped to different categories of hand shapes. An experiment was carried out in which test persons wearing a data glove had to grasp physical objects of different shapes corresponding to the various grasp types of the Schlesinger taxonomy. The collected data was comprehensively analyzed using numerous classification techniques provided in an open-source machine learning toolbox. Evaluated machine learning methods are composed of (a) 38 classifiers including different types of function learners, decision trees, rule-based learners, Bayes nets, and lazy learners; (b) data preprocessing using principal component analysis (PCA) with varying degrees of dimensionality reduction; and (c) five meta-learning algorithms under various configurations where selection of suitable base classifier combinations was informed by the results of the foregoing classifier evaluation. Classification performance was analyzed in six different settings, representing various application scenarios with differing generalization demands. The results of this work are twofold: (1) We show that a reasonably good to highly reliable recognition of grasp types can be achieved—depending on whether or not the glove user is among those training the classifier—even with uncalibrated data gloves. (2) We identify the best performing classification methods for the recognition of various grasp types. To conclude, cumbersome calibration processes before productive usage of data gloves can be spared in many situations.
منابع مشابه
A Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features
Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...
متن کاملA Hidden Markov Model Based Sensor Fusion Approach for Recognizing Continuous Human Grasping Sequences
The Programming by Demonstration (PbD) technique aims at teaching a robot to accomplish a task by learning from a human demonstration. In a manipulation context, recognizing the demonstrator's hand gestures, specifically when and how objects are grasped, plays a significant role. Here, a system is presented that uses both hand shape and contact point information obtained from a data glove and t...
متن کاملMachine Recognition of Auslan Signs Using PowerGloves: Towards Large-Lexicon Recognition of Sign Language
Instrumented gloves use a variety of sensors to provide information about the user's hand. They can be used for recognition of gestures; especially well-deened gesture sets such as sign languages. However, recognising gestures is a diicult task, due to intrapersonal and inter-personal variations in performing them. One approach to solving this problem is to use machine learning. In this case, s...
متن کاملEmotion Detection in Persian Text; A Machine Learning Model
This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...
متن کاملA hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Presence
دوره 17 شماره
صفحات -
تاریخ انتشار 2008